Tuberculosis chemotherapy: current drug delivery approaches
نویسندگان
چکیده
Tuberculosis is a leading killer of young adults worldwide and the global scourge of multi-drug resistant tuberculosis is reaching epidemic proportions. It is endemic in most developing countries and resurgent in developed and developing countries with high rates of human immunodeficiency virus infection. This article reviews the current situation in terms of drug delivery approaches for tuberculosis chemotherapy. A number of novel implant-, microparticulate-, and various other carrier-based drug delivery systems incorporating the principal anti-tuberculosis agents have been fabricated that either target the site of tuberculosis infection or reduce the dosing frequency with the aim of improving patient outcomes. These developments in drug delivery represent attractive options with significant merit, however, there is a requisite to manufacture an oral system, which directly addresses issues of unacceptable rifampicin bioavailability in fixed-dose combinations. This is fostered by the need to deliver medications to patients more efficiently and with fewer side effects, especially in developing countries. The fabrication of a polymeric once-daily oral multiparticulate fixed-dose combination of the principal anti-tuberculosis drugs, which attains segregated delivery of rifampicin and isoniazid for improved rifampicin bioavailability, could be a step in the right direction in addressing issues of treatment failure due to patient non-compliance.
منابع مشابه
Nanomedicine for tuberculosis: Insights from animal models
Patient noncompliance to current tuberculosis (TB) therapy owing to multidrug administration daily leads to treatment failure and emergence of multidrug resistant and extensively drug resistant TB. To avoid the daily dosing, application of nanotechnology is the only viable solution by virtue of sustained release of drugs. Other potential advantages of the system include the possibility of selec...
متن کاملNanomedicine for tuberculosis: Insights from animal models
Patient noncompliance to current tuberculosis (TB) therapy owing to multidrug administration daily leads to treatment failure and emergence of multidrug resistant and extensively drug resistant TB. To avoid the daily dosing, application of nanotechnology is the only viable solution by virtue of sustained release of drugs. Other potential advantages of the system include the possibility of selec...
متن کاملNanoparticle Delivery of Anti-Tuberculosis Chemotherapy as a Potential Mediator Against Drug-Resistant Tuberculosis
Drug-resistant tuberculosis is quickly emerging as one of the largest threats to the global health community. Current chemotherapy for tuberculosis dates back to the 1950s and is arduous, lengthy, and remains extremely difficult to complete in many of the highest burdened areas. This causes inadequate or incomplete treatment, resulting in genetic selection of drug-resistant strains. With a dear...
متن کاملDesign, Synthesis and Characterization of Nano niosomal Delivery system Containing paclitaxel drug for Drug Delivery to Osteosarcoma Cell Line (Saos-2)
Introduction: Osteosarcoma is one of the cancers that current treatment strategies using chemotherapy drugs have not been very successful due to multiple drug resistance and harmful side effects. The use of nano-niosomal systems in the delivery of paclitaxel is one of the attractive approaches to overcome these limitations. paclitaxel is a powerful anticancer agent used in the treatment of many...
متن کاملNew drug targets for Mycobacterium tuberculosis.
In spite of the availability of effective chemotherapy and Bacille-Calmette-Guerin (BCG) vaccine, tuberculosis remains a leading infectious killer world-wide. Many factors such as, human immunodeficiency virus (HIV) co-infection, drug resistance, lack of patient compliance with chemotherapy, delay in diagnosis, variable efficacy of BCG vaccine and various other factors contribute to the mortali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Respiratory Research
دوره 7 شماره
صفحات -
تاریخ انتشار 2006